THE AUTOMORPHISM GROUP OF A HOMOGENEOUS ALMOST COMPLEX MANIFOLD (1)

BY JOSEPH A. WOLF

1. **Introduction.** Let M be a compact simply connected manifold of nonzero Euler characteristic that carries a homogeneous almost complex structure. We determine the largest connected group $A_0(M)$ of almost analytic automorphisms of M.

Our hypotheses represent M as a coset space G/K where G is a maximal compact subgroup of the Lie group $A_0(M)$ and K is a closed connected subgroup of maximal rank in G. In §2 we collect some information, decomposing $M = M_1 \times \cdots \times M_t$ as a product of "irreducible" factors along the decomposition of G as a product of simple groups; then every invariant almost complex structure or riemannian metric decomposes and every invariant riemannian metric is hermitian relative to any invariant almost complex structure; furthermore the decomposition is independent of G in a certain sense. In §3 we choose an invariant riemannian metric and determine the largest connected groups $H_0(M_i)$ of almost hermitian isometries of the M_i , Then $A_0(M)$ is determined in §4. There it is shown that $A_0(M) = A_0(M_1) \times \cdots \times A_0(M_t)$, that $A_0(M_i) = H_0(M_i)$ if the almost complex structure on M_i is not integrable, and that $A_0(M_i) = H_0(M_i)^C$ if the almost complex structure on M_i is induced by a complex structure. $A_0(M)$ thus is a centerless semisimple Lie group whose simple normal analytic subgroups are just the $A_0(M_i)$.

2. **Decomposition.** Let M be an effective coset space of a compact connected Lie group G by a connected subgroup K of maximal rank. In other words M = G/K is compact, simply connected and of nonzero Euler characteristic; G is a compact centerless semisimple Lie group, rank K=rank G, and K contains no simple factor of G. Then

(2.1a)
$$G = G_1 \times \cdots \times G_t$$
, $K = K_1 \times \cdots \times K_t$ and $M = M_1 \times \cdots \times M_t$ where

(2.1b)
$$G_i$$
 is simple, $K_i = K \cap G_i$ and $M_i = G_i/K_i$.

 G_i is a compact connected centerless simple Lie group, K_i is a connected subgroup of maximal rank, and $M_i = G_i/K_i$ is a simply connected effective coset space of nonzero Euler characteristic. The decomposition of M is unique up to order of the factors because it is determined by the decomposition of G.

Received by the editors November 5, 1966 and, in revised form, March, 1, 1969.

⁽¹⁾ Research partially supported by N.S.F. Grants GP-5798 and GP-8008.

We call (2.1) the canonical decomposition of the coset space M = G/K. The factors $M_i = G_i/K_i$ are the irreducible factors of M = G/K. If there is just one irreducible factor, i.e. if G is simple, then we say that M = G/K is irreducible.

- 2.2. Proposition. Let M be an effective coset space G/K where G is a compact connected Lie group and K is a connected subgroup of maximal rank. Let $M = M_1 \times \cdots \times M_t$ be the canonical decomposition into irreducible factors $M_i = G_i/K_i$.
- 1. The G-invariant almost complex structures J on M are just the $J_1 \times \cdots \times J_t$ where J_i is a G_i -invariant almost complex structure on M_i .
- 2. The G-invariant riemannian metrics ds^2 on M are just the $ds_1^2 \times \cdots \times ds_t^2$ where ds_i^2 is a G_i -invariant riemannian metric on M_i ; there each (M_i, ds_i^2) is an irreducible riemannian manifold, so

$$(M, ds^2) = (M_1, ds_1^2) \times \cdots \times (M_t, ds_t^2)$$

is the de Rham decomposition.

3. Let J be a G-invariant almost complex structure on M. If ds^2 is a G-invariant riemannian metric, then it is the real part of a G-invariant almost hermitian (for J) metric h on M, and $h = h_1 \times \cdots \times h_t$ where h_i is a G_i -invariant almost hermitian (for J_i) metric on M_i and ds_i^2 is the real part of h_i .

Proof. The Lie algebras decompose uniquely as direct sums $\mathfrak{G} = \mathfrak{R} + \mathfrak{M}$ and $\mathfrak{G}_i = \mathfrak{R}_i + \mathfrak{M}_i$, $\mathfrak{R} = \sum \mathfrak{R}_i$ and $\mathfrak{M} = \sum \mathfrak{M}_i$, with $[\mathfrak{R}, \mathfrak{M}] \subseteq \mathfrak{M}$ and $[\mathfrak{R}_i, \mathfrak{M}_i] \subseteq \mathfrak{M}_i$. Let Z be the center of K, so \mathfrak{R} is the centralizer of Z in \mathfrak{G} . Then $Z = Z_1 \times \cdots \times Z_t$ where Z_i is the center of K_i and \mathfrak{R}_i is the centralizer of Z_i in \mathfrak{G}_i .

 π denotes the representation of K on \mathfrak{M} and π_i is the representation of K_t on \mathfrak{M}_i . Then $\pi = \pi_1 \oplus \cdots \oplus \pi_t$. Let $X = X_1 \cup \cdots \cup X_t$ be the set of nontrivial characters on Z such that

(2.3a)
$$\mathfrak{M}^C = \sum_{x} \mathfrak{M}_x \text{ and } \mathfrak{M}_i^C = \sum_{x} \mathfrak{M}_x$$

where Z acts on \mathfrak{M}_{χ} by the character χ . Each \mathfrak{M}_{χ} is ad (K)-stable, so K acts on \mathfrak{M}_{χ} by a representation π_{χ} , and

(2.3b)
$$\pi^C = \sum_{\chi} \pi_{\chi} \quad \text{and} \quad \pi_i^C = \sum_{\chi_i} \pi_{\chi}.$$

The point [7, Theorem 8.13.3] is that

(2.3c) the π_x are irreducible and mutually inequivalent.

We transform the complex decomposition (2.3) to a real decomposition. Let $X = S \cup T$, $S = S_1 \cup \cdots \cup S_t$ and $T = T_1 \cup \cdots \cup T_t$ where S_i consists of the nonreal characters in X_i and T_i consists of the real ones. By real partition of X we mean a disjoint $X = S' \cup S'' \cup T$ where $S'' = \overline{S}'$. If $\chi \in S_i$ then $\overline{\chi} \in S_i$; thus the real partition

induces real partitions $X_i = S_i' \cup S_i'' \cup T_i$. If |S| = 2n then X has 2^n real partitions. Now choose a real partition $X = S' \cup S'' \cup T$ and define

$$\chi \in S'$$
: K acts on $\mathfrak{M}_{\chi}^{R} = \mathfrak{M} \cap (\mathfrak{M}_{\chi} + \mathfrak{M}_{\overline{\chi}})$ by π_{χ}^{R}
 $\chi \in T$: K acts on $\mathfrak{M}_{\chi}^{R} = \mathfrak{M} \cap \mathfrak{M}_{\chi}$ by π_{χ}^{R} .

Then (2.3abc) becomes

(2.4a)
$$\mathfrak{M} = \sum_{S'} \mathfrak{M}_{\chi}^{R} + \sum_{T} \mathfrak{M}_{\chi}^{R} \quad \text{and} \quad \mathfrak{M}_{i} = \sum_{S'_{i}} \mathfrak{M}_{\chi}^{R} + \sum_{T'_{i}} \mathfrak{M}_{\chi}^{R},$$

(2.4b)
$$\pi = \sum_{S'} \pi_{\chi}^R + \sum_{T} \pi_{\chi}^R \quad \text{and} \quad \pi_i = \sum_{S'_i} \pi_{\chi}^R + \sum_{T_i} \pi_{\chi}^R,$$

(2.4c) the π_x^R are real-irreducible and mutually inequivalent.

Let A be the commuting algebra of π on \mathfrak{M} . By (2.4c), $A = \sum_{S'} C + \sum_{T} R$, for π_{χ}^{R} has commuting algebra C if $\chi \in S'$, R if $\chi \in T$. Invariant almost complex structures are in obvious correspondence with elements of square -I of the commuting algebra, which now are seen to exist if and only if T is empty, and (1) follows. Similarly, the decomposition of ds^{2} in (2), and the existence and decomposition of h in (3), are immediate.

It remains only to show the (M_i, ds_i^2) irreducible as riemannian manifolds in (2). That fact is known [3, §5.1], but in our present context we can give a short proof for the convenience of the reader. If (M_i, ds_i^2) reduces, then it is a riemannian product $M' \times M''$ because it is complete and simply connected, so we have an ad (K_i) -stable decomposition $\mathfrak{M}_i = \mathfrak{M}' \oplus \mathfrak{M}''$ with the properties

$$[\mathfrak{M}',\mathfrak{M}''] \subseteq \mathfrak{R}_i, \qquad \mathfrak{M}'^C = \sum_{X'} \mathfrak{M}_X, \qquad \mathfrak{M}''^C = \sum_{X''} \mathfrak{M}_X, \qquad X_i = X' \cup X''.$$

Here X' and X'' are disjoint and self conjugate. If $\chi' \in X'$ and $\chi'' \in X''$ with $[\mathfrak{M}_{\chi'}, \mathfrak{M}_{\chi''}] \neq 0$, then $\chi'\chi'' = 1$ so $\chi' = \overline{\chi}'' \in X''$ which is absurd. Thus $[\mathfrak{M}', \mathfrak{M}''] = 0$, and it follows that the simple Lie algebra \mathfrak{G}_i is direct sum of ideals

$$\mathfrak{G}' = \{\Re_i \cap [\mathfrak{M}', \mathfrak{M}']\} + \mathfrak{M}' \quad \text{and} \quad \mathfrak{G}'' = \{\Re_i \cap [\mathfrak{M}'', \mathfrak{M}'']\} + \mathfrak{M}''.$$

That being absurd, irreducibility is proved. Q.E.D.

- 2.5. REMARK. In the notation of the proof of Proposition 2.2, M has a G-invariant almost complex structure if and only if X = S, and then those structures J correspond to the real partitions $X = S' \cup S''$ by: $\sum_{S'} \mathfrak{M}_{\chi}$ and $\sum_{S''} \mathfrak{M}_{\chi}$ are the $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of J on \mathfrak{M}^C .
- 3. Almost hermitian isometries. Let M be a manifold with an almost hermitian metric h. Then $h = ds^2 + (-1)^{1/2}\omega$ where the riemannian metric ds^2 is the real part of h and $\omega(u, v) = ds^2(u, Jv)$ is the imaginary part; that determines the almost complex structure J. By almost hermitian isometry of (M, h) we mean a diffeomorphism that preserves h, i.e. that is a riemannian isometry of (M, ds^2) which preserves J.

Let I(M) denote the (Lie) group of all isometries of (M, ds^2) , H(M) the closed subgroup consisting of those isometries that preserve J. Then H(M) is the (Lie) group of all almost hermitian isometries of (M, h). In particular its identity component $H_0(M)$ is an analytic subgroup of the identity component $I_0(M)$ of I(M). If $(M, h) = (M_1, h_1) \times \cdots \times (M_t, h_t)$ hermitian product, then the de Rham decomposition says that $I_0(M)$ preserves each noneuclidean factor, so those factors are stable under $H_0(M)$.

Let M = G/K as in Proposition 2.2. Let h be a G-invariant almost hermitian metric on M. The canonical decomposition induces $(M, h) = (M_1, h_1) \times \cdots \times (M_t, h_t)$ hermitian product where each (M_t, ds_t^2) , $ds_t^2 = \operatorname{Re} h_t$, is an irreducible noneuclidean riemannian manifold. Thus $H_0(M) = H_0(M_1) \times \cdots \times H_0(M_t)$, and H(M) is generated by its subgroup $H(M_1) \times \cdots \times H(M_t)$ and permutations of mutually isometric (M_t, h_t) ; so its determination is more or less reduced to the case where M = G/K is irreducible. There the result is

3.1. PROPOSITION. Let M be an effective coset space G/K where G is a compact connected simple Lie group and K is a connected subgroup of maximal rank. Let h be a G-invariant almost hermitian metric on M, so $M = H_0(M)/B$ where $G \subseteq H_0(M)$ and $B \cap G = K$. If $G \neq H_0(M)$, then (M, h) is an irreducible hermitian symmetric space of compact type listed below.

Case	G	K	$H_0(M)$	В	(M, h)
1	G_2	<i>U</i> (2)	SO (7)	$SO(5) \times SO(2)$	5-dimensional complex quadric
2	$Sp(r)/Z_2$	$Sp(r-1)\cdot U(1)$	$SU(2r)/Z_{2r}$	U(2r-1)	complex projective (2r-1)-space
3	SO (2r+1)	U(r)	$SO(2r+2)/Z_2$	$U(r+1)/Z_2$	unitary structures on R^{2r+2}
3′	$Spin(7)/Z_2$	U (3)	$SO(8)/Z_2$	SO(6)·SO(2)	6-dimensional complex quadric

REMARK 1. In the exceptional cases above, K is not R-irreducible on the tangent space, so M has another G-invariant almost hermitian metric for which $G = H_0(M)$.

REMARK 2. The proof is easily reduced to the case where B is the centralizer of a toral subgroup of $H_0(M)$, and then the result can be extracted from [2, Table 5] and the Bott-Borel-Weil Theorem. But here it is convenient to reduce the proof to some classifications of Oniščik [4].

Proof. As M has nonzero Euler characteristic, B has maximal rank in $H_0(M)$, so $H_0(M)/B = G/K$ is one of the following entries in Oniščik's list [4, Table 7].

- (i) $A_{2n-1}/A_{2n-2} \cdot T = C_n/C_{n-1} \cdot T$ (our Case 2),
- (ii) $B_3/B_2 \cdot T = G_2/A_1 \cdot T$ (our Case 1),
- (iii) $B_3/D_3 = G_2/A_2$ (B_3 does not preserve J here),

- (iv) $D_{n+1}/A_n \cdot T = B_n/A_{n-1} \cdot T$ (our Case 3),
- (v) $D_4/D_3 \cdot T = B_3/A_2 \cdot T$ (our Case 3').

The assertions follow with the observation that $H_0(M)/B$ is an irreducible hermitian symmetric coset space of compact type in each of the admissible cases. Q.E.D.

- 4. Almost analytic automorphisms. Let M be a manifold with almost complex structure J. By almost analytic automorphism of M, we mean a diffeomorphism of M which preserves J. The set of all such diffeomorphisms forms a group A(M). If M is compact, then [1] in the compact-open topology, A(M) is a Lie transformation group of M. We denote its identity component by $A_0(M)$. If, further, we have an almost hermitian metric on M, then H(M) is a compact subgroup of A(M). That will be our main tool in studying A(M).
- 4.1. THEOREM. Let M = G/K be a simply connected effective coset space of nonzero Euler characteristic where G is a compact connected Lie group. Let J be a G-invariant almost complex structure on M. Let $M = M_1 \times \cdots \times M_t$ be the canonical decomposition into irreducible coset spaces, and decompose $J = J_1 \times \cdots \times J_t$ where J_i is a G_i -invariant almost complex structure on M_i . Then
 - 1. $A_0(M) = A_0(M_1) \times \cdots \times A_0(M_t)$.
- 2. M has a G-invariant riemannian metric $ds^2 = ds_1^2 \times \cdots \times ds_t^2$ for which $H_0(M)$ is a maximal compact subgroup of $A_0(M)$.
- 3. If J_i is integrable then $A_0(M_i) = H_0(M_i)^C$. If J_i is not integrable then $A_0(M) = H_0(M)$.

Proof. For the second statement, enlarge G to a maximal compact subgroup H of $A_0(M)$ and choose an H-invariant riemannian metric ds^2 on M. Then $ds^2 = ds_1^2 \times \cdots \times ds_t^2$ as required, by Proposition 2.2, and $H = H_0(M)$ by construction.

We simplify notation for the proofs of the first and third statement by enlarging G to $H_0(M)$ and writing A for $A_0(M)$. That does not change the canonical decomposition of M, for the latter is the de Rham decomposition for ds^2 according to Proposition 2.2. Now G/K = M = A/B where $G \subseteq A$ is a maximal compact subgroup and $K = G \cap B$.

We check that A is a centerless semisimple Lie group. If L is a closed normal analytic subgroup of A with $G \cap L$ discrete, then $G \cdot L \subseteq A$ is effective on

$$(G \cdot L)/(K \cdot L) = M$$
, so $L = \{1\}$.

Let L be the radical of A: now A is semisimple. Let $\mathfrak L$ be the orthocomplement of $\mathfrak G$ in a maximal compactly embedded subalgebra of $\mathfrak A$: now A has finite center, so the centerless group G contains the center of A, so A is centerless.

Let A^{α} , $1 \le \alpha \le r$, be the simple normal analytic subgroups of A. So $A = A^{1} \times \cdots \times A^{r}$ with A^{α} centerless simple. Now $G = G^{1} \times \cdots \times G^{r}$, $K = K^{1} \times \cdots \times K^{r}$ and $M = M^{1} \times \cdots \times M^{r}$ where

$$G^{\alpha} = G \cap A^{\alpha}, \quad K^{\alpha} = K \cap G^{\alpha}, \quad M^{\alpha} = G^{\alpha}/K^{\alpha}.$$

If $\alpha \neq \beta$ then A^{α} acts trivially on M^{β} . For every $a \in A^{\alpha}$ centralizes the transitive transformation group G^{β} of M^{β} , hence induces some transformation \bar{a} of M^{β} that is trivial or fixed point free. As A^{α} is connected, \bar{a} is homotopic to 1 so its Lefschetz number is the (nonzero) Euler characteristic of M^{β} ; that shows $\bar{a}=1$. Now $M^{\alpha}=A^{\alpha}/B^{\alpha}$, $B^{\alpha}=B\cap A^{\alpha}$, with $B=B^{1}\times\cdots\times B^{r}$.

According to Oniščik [5, Table 1] the only possibilities for $G^{\alpha}/K^{\alpha} = M^{\alpha} = A^{\alpha}/B^{\alpha}$, A^{α} noncompact, are given in the following table.

A^{α}	$M^{lpha}=G^{lpha}/K^{lpha}$	Conditions
$SL(2n, R)/Z_2$	$SO(2n)/SO(2n_1) \times \cdots \times SO(2n_p)$	$n=\sum n_i>1$
SL(2n+1, R)	$SO(2n+1)/SO(2n_1) \times \cdots \times SO(2n_{p-1}) \times SO(2n_p+1)$	$n=\sum n_i$
$GL(n, Q)/Z_2$	$Sp(n)/Sp(n_1) \times \cdots \times Sp(n_p) \times U(1)^q$	$n=q+\sum n_i$
$SO(1, 2n-1)/\mathbb{Z}_2$	$SO(2n-1)/SO(2n_1) \times \cdots \times SO(2n_p) \times U(m_1) \times \cdots \times U(m_q)$	$ \begin{array}{c} n-1 \\ = \sum n_i + \sum m_j \end{array} $
$E_{6,C_4}/Z_2$	$Sp(4)/Sp(2) \times Sp(2)$ and $Sp(4)/[Sp(1)]^4$	none
E _{6,F4}	$F_4/Spin(9), F_4/Spin(8), F_4/U(4) \text{ and } F_4/[SU(2)]^4$	none
$(G^{a})^{C}$	G^{α}/K^{α} where K^{α} is the centralizer of a nontrivial toral subgroup of G^{α}	G ^α compact centerless simple

Note that G^{α} is simple except in Case 1 with n=2. There M^{α} is the product of two Riemann spheres, so A^{α} is the product of two copies of $SL(2, \mathbb{C})/\mathbb{Z}_2$, contradicting the table entry for A^{α} . Thus we always have G^{α} simple, so each M^{α} is an M_i , and the first statement of our theorem is proved with $A^{\alpha} = A_0(M^{\alpha})$.

Now we may, and do, assume M irreducible. Thus A and G are simple.

4.2. Lemma. The invariant almost complex structure J is integrable if and only if $A = G^{C}$. In that case B is a complex parabolic subgroup of A and J is induced either from the natural complex structure on A/B or from the conjugate structure.

Proof of lemma. Let J be integrable; we check $\mathfrak{G}^C \subset \mathfrak{A}$. For if $\xi \in \mathfrak{G}$ and ξ^* denotes the holomorphic vector field induced on M, then $J(\xi^*)$ is holomorphic. Thus \mathfrak{G}^C acts on M by $\xi + i\eta \to \xi^* + J(\eta^*)$, and this action integrates to G^C because M is compact; that shows $G^C \subset A$ so $\mathfrak{G}^C \subset \mathfrak{A}$.

Let $\mathfrak{A} = \mathfrak{G}^C$. As \mathfrak{R} is its own normalizer in \mathfrak{G} because it has maximal rank, \mathfrak{B} is its own normalizer in \mathfrak{A} , so B is an R-algebraic subgroup of A. Thus A has an Iwasawa decomposition GSN with B = KSN. As $\mathfrak{A} = \mathfrak{G}^C$, the group S^C is a complex Cartan subgroup of A, so N is a complex unipotent subgroup. Now K^CS^CN is the complex group generated by B and it has intersection K with G; thus $M = A/B \to A/K^CS^CN = G/K$ is trivial so B is a complex subgroup of A. As A/B is compact now B is a complex parabolic subgroup.

Decompose $B=B^r\cdot B^u$ into reductive and unipotent parts. Let Z be the identity component of the center of B^r , complex subtorus of S^c . Let D be the set of characters $\chi\neq 1$ on Z that are restrictions of positive roots, so $\mathfrak{B}^u=\sum_D\mathfrak{A}_\chi$. Define $\mathfrak{B}^{-u}=\sum_D\mathfrak{A}_{-\chi}$ so that \mathfrak{A} is the direct sum of its subspaces \mathfrak{B}^r , \mathfrak{B}^u and \mathfrak{B}^{-u} . $\mathfrak{B}\cap(\mathfrak{B}^u+\mathfrak{B}^{-u})$ represents the real tangent space of M, and $\mathfrak{B}^u+\mathfrak{B}^{-u}$ represents the complexified tangent space. If $\pm\chi\in D$, then \mathfrak{A}_χ is an irreducible representation space of B^r , so J acts on \mathfrak{A}_χ either as $\sqrt{-1}$ or as $-\sqrt{-1}$. Let \mathfrak{L}^+ (resp. \mathfrak{L}^-) denote the image in $\mathfrak{A}/\mathfrak{B}$ of the \mathfrak{A}_χ , $-\chi\in D$, on which J acts as $\sqrt{-1}$ (resp. $-\sqrt{-1}$). Then ad $(\mathfrak{B})\cdot\mathfrak{L}^\pm\subset\mathfrak{L}^\pm$ by invariance of J under B. If v is the restriction to Z of the highest root, then $\mathfrak{A}/\mathfrak{B}=\sum_{n\geq 0}$ ad $(\mathfrak{B})^n\cdot(\mathfrak{A}_{-\nu}\mod\mathfrak{B})$, because \mathfrak{A} is simple, so $\mathfrak{A}/\mathfrak{B}$ is the one of \mathfrak{L}^+ or \mathfrak{L}^- into which $\mathfrak{A}_{-\nu}$ maps. Thus either J acts on \mathfrak{B}^{-u} as $\sqrt{-1}$ and the natural complex structure of A/B induces J, or J acts on \mathfrak{B}^{-u} as $-\sqrt{-1}$ and the natural structure induces -J. In either case J is integrable.

In general suppose $\mathfrak{G}^C \subset \mathfrak{A}$. Then $M = G^C/B \cap G^C$ is a complex flag manifold on which A is the largest connected group of analytic automorphisms. Thus A is a centerless complex semisimple group, hence the complexification of its maximal compact subgroup G.

Lemma 4.2 is proved.

4.3. Lemma. If B^C is parabolic in A^C , then J is integrable so $A = G^C$.

Proof of lemma. J is an element of square -I in the commuting algebra of ad (\mathfrak{B}) on $\mathfrak{A}/\mathfrak{B}$. Thus it induces an element J^c of square -I in the commuting algebra of ad (\mathfrak{B}^c) on $\mathfrak{A}^c/\mathfrak{B}^c$. Now suppose B^c parabolic in A^c , so $M^c = A^c/B^c$ is compact and of positive Euler characteristic with invariant almost complex structure J^c .

If A is complex then $A = G^C$ and Lemma 4.2 says that J is integrable. Thus we may assume A not complex so that A^C is simple. Then Lemma 4.2 says that J^C is integrable, and in fact that either J^C or $-J^C$ is induced by the natural complex structure on A^C/B^C . Replace J by -J if necessary; that does not alter integrability of J, but it replaces J^C by $-J^C$, allowing us to assume J^C induced by the natural complex structure of A^C/B^C .

Decompose $B = B^r \cdot B^u$ into reductive and unipotent parts, so $\mathfrak{B} = \mathfrak{B}^r + \mathfrak{B}^u$ and $\mathfrak{A} = \mathfrak{B} + \mathfrak{B}^{-u}$ where $\mathfrak{B}^{\pm u}$ are subalgebras normalized by \mathfrak{B}^r . Let \mathfrak{B}^{-u} represent the real tangent space to M. Note that J^C acts on $(\mathfrak{B}^{-u})^C$ as $\sqrt{-1}$. That contradicts our arrangement that the action of J^C on $(\mathfrak{B}^{-u})^C$ is induced by the action of J on \mathfrak{B}^{-u} . Thus A cannot be noncomplex. Lemma 4.3 is proved.

We complete the proof of Theorem 4.1. As in the second paragraph of the proof of Lemma 4.2, B is a real algebraic subgroup of A, so there is a semidirect product decomposition $B = B^r \cdot B^u$ into reductive and unipotent parts. If rank $B^r < \text{rank } A$, then any Cartan subalgebra of $\mathfrak A$ has an element ξ not contained in any isotropy subalgebra of $\mathfrak A$ on M so it induces a nonvanishing vector field ξ^* on M. The

existence of a nonvanishing vector field ξ^* says that M has Euler characteristic zero. That contradiction proves rank B^r = rank A.

Let σ be the Cartan involution of $\mathfrak A$ with fixed point set $\mathfrak B$ and let $\mathfrak A = \mathfrak B + \mathfrak B$ be the Cartan decomposition. We may assume $\sigma(\mathfrak B^r) = \mathfrak B^r$, so $\mathfrak B^r = \mathfrak R + (\mathfrak P \cap \mathfrak B^r)$. That gives compact real forms

$$\mathfrak{A}_c = \mathfrak{G} + \sqrt{-1} \mathfrak{B}$$
 and $\mathfrak{B}_c^r = \mathfrak{R} + \sqrt{-1} (\mathfrak{P} \cap \mathfrak{B}^r)$.

Let A_c denote the centerless group with Lie algebra \mathfrak{A}_c and let B_c^r be the analytic subgroup for \mathfrak{B}_c^r . Then rank $B_c^r = \operatorname{rank} A = \operatorname{rank} A_c$ tells us that $X = A_c/B_c^r$ is a compact simply connected manifold of positive Euler characteristic. If A = G then $B = B^r = K$, so $A_c = G$ and $B_c^r = K$, whence X = M.

As in the second paragraph of the proof of Lemma 4.2 we have Iwasawa decompositions A = GSN and B = KSN. Choose a torus subgroup $T \subseteq K$ such that $H = T \times S \subseteq B^r$ is a Cartan subgroup of A. Let Δ be the root system. Now $\Delta = D \cup E \cup -E$ disjoint, and $\mathfrak{A} = \mathfrak{B}^r + \mathfrak{B}^u + \mathfrak{B}^{-u}$ direct, where

$$\mathfrak{B}^r = \mathfrak{H} + \mathfrak{A} \cap \Bigl\{\sum_D \mathfrak{A}_{\phi}\Bigr\}, \qquad \mathfrak{B}^u = \mathfrak{A} \cap \Bigl\{\sum_E \mathfrak{A}_{\phi}\Bigr\}, \qquad B^{-u} = \mathfrak{A} \cap \Bigl\{\sum_E \mathfrak{A}_{-\phi}\Bigr\}.$$

Observe that σ interchanges \mathfrak{B}^u and \mathfrak{B}^{-u} . For $\mathfrak{B}^u \subset N$ because $N = N' \cdot B^u$ where $B^r = KSN'$, and the dual space of \mathfrak{S} has an ordering such that

$$\mathfrak{N}^{C} = \sum_{\phi \mid \mathfrak{S} > 0} \mathfrak{A}_{\phi}, \quad \text{and} \quad \phi \mid_{\mathfrak{S}} > 0 \quad \text{iff } \sigma \phi \mid_{\mathfrak{S}} < 0.$$

View the invariant almost complex structure J of M as an element of square -I in the commuting algebra of ad (\mathfrak{B}) on $\mathfrak{A}/\mathfrak{B}$, hence in the commuting algebra of ad (\mathfrak{B}^r) on $\mathfrak{B}^{-u} \cong \mathfrak{A}/\mathfrak{B}$; then extend J to an element J' of square -I in the commuting algebra of ad (\mathfrak{B}^r) on $\mathfrak{B}^u + \mathfrak{B}^{-u}$ by the formula

$$J'(\xi + \eta) = \sigma J(\sigma \xi) + J(\eta)$$
 where $\xi \in \mathfrak{B}^u$, $\eta \in \mathfrak{B}^{-u}$.

Now J' is an A-invariant σ -invariant almost complex structure on A/B^r , so [6, Proposition 7.7] it defines an A_c -invariant σ -invariant almost complex structure on A_c/B_c^r . We have proved that $X = A_c/B_c^r$ has an invariant almost complex structure.

Suppose $A \neq G$. Note that [6, Theorem 4.10] eliminates lines 5 and 6 of the Oniščik table above, so either $A = G^C$ or A is absolutely simple and of classical type. Suppose $A \neq G^C$ so A_c is simple and of classical type. Then [6, Theorem 4.10] shows that B_c^r is the centralizer of a torus in A_c . Let \mathcal{B}_c denote the center of \mathcal{B}_c^r . Then $\sigma(\mathcal{B}_c^r) = \mathcal{B}_c^r$ implies $\sigma(\mathcal{B}_c) = \mathcal{B}_c$, so $\mathcal{B}_c = \mathfrak{U} + (-1)^{1/2}\mathfrak{B}$ with $\mathfrak{U} \subseteq \mathfrak{R}$ and $\mathfrak{B} \subseteq \mathfrak{P} \cap \mathfrak{B}^r$. Now \mathfrak{B}^r has center $\mathfrak{B} = \mathfrak{U} + \mathfrak{B} \subseteq \mathfrak{T} + \mathfrak{S} = \mathfrak{F}$, and \mathfrak{B}^r is the centralizer of \mathfrak{B} in \mathfrak{A} . We order the root system Δ so that a root $\phi > 0$ whenever $\phi|_{\mathfrak{F}} \neq 0$ and $\phi|_{\mathfrak{S}} > 0$. Then \mathfrak{B}^C contains the Borel subalgebra $\mathfrak{F}^C + \sum_{\phi > 0} \mathfrak{A}_{\phi}$ of \mathfrak{A}^C for that ordering, so \mathfrak{B}^C is a parabolic subalgebra of \mathfrak{A}^C . Then Lemma 4.3 says $A = G^C$. We have proved that $A \neq G$ implies $A = G^C$.

If *J* is integrable then Lemma 4.2 says $A = G^C$. If *J* is not integrable then Lemma 4.2 says $A \neq G^C$, so we cannot have $A \neq G$, and that forces A = G. Theorem 4.1 is proved. Q.E.D.

4.3. Remark. Theorem 4.1 extends the scope of [8, Theorem 17.4(3)], but that result remains incomplete because, as remarked at the end of [8, §17], it is not known whether

$$A_0(E_6/\text{ad }SU(3))$$
 is E_6 rather than E_6^C

or whether

$$A_0(SO(n^2-1)/\text{ad }SU(n))$$
 is $SO(n^2-1)$ rather than $SO(n^2-1, C)$, $SL(n^2-1, R)$, or $SO(1, n^2-1)$.

REFERENCES

- 1. W. M. Boothby, S. Kobayashi and H.-C. Wang, A note on mappings and automorphisms of almost complex manifolds, Ann. of Math. 77 (1963), 329-334.
- 2. E. B. Dynkin, The maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39-166; Amer. Math. Soc. Transl. (2) 6 (1957), 245-378.
 - 3. B. Kostant, On holonomy and homogeneous spaces, Nagoya Math. J. 12 (1957), 31-54.
- 4. A. L. Oniščik, *Inclusion relations among transitive compact transformation groups*, Trudy Moskov. Mat. Obšč. 11 (1962), 199-242; Amer. Math. Soc. Transl. (2) 50 (1966), 5-58.
- 5. ——, Lie groups transitive on compact manifolds. III, Mat. Sb. 75 (117) (1968), 255-263 = Math. USSR Sbornik 4 (1968).
- 6. J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, J. Differential Geometry 2 (1968), 77-114; II, ibid. 115-159.
 - 7. J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
- 8. ——, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59-148.

University of California, Berkeley, California